Bem-Vindo ao site do Matemático Valdivino Sousa

test

Aprendendo Equação do 2º Grau de forma fácil



 Aprendendo Equação do 2º Grau de forma fácil. Uma equação do segundo grau possui uma incógnita de expoente 2. O método de Bhaskara é uma opção para encontrar os resultados desse tipo de equação.


Uma equação é uma expressão matemática que possui em sua composição incógnitas, coeficientes, expoentes e um sinal de igualdade. As equações são caracterizadas de acordo com o maior expoente de uma das incógnitas. Veja:
  • 2x + 1 = 0. O expoente da incógnita x é igual a 1. Dessa forma, essa equação é classificada como do 1º grau.
  • 2x² + 2x + 6 = 0. Há duas incógnitas x nessa equação, e uma delas possui expoente 2. Essa equação é classificada como do 2º grau.


x³ – x² + 2x – 4 = 0. Nesse caso, temos três incógnitas x, e o maior expoente – no caso, expoente 3 – torna a equação como do 3º grau.

O que são raízes ou soluções de uma equação do 2º grau?

Cada modelo de equação possui uma forma de resolução. Trabalharemos a forma de resolução de uma equação do 2º grau por meio do método de "Bhaskara". Determinar a solução de uma equação é o mesmo que descobrir suas raízes, isto é, o valor ou os valores que satisfazem a equação. As raízes da equação do 2º grau x² – 10x + 24 = 0, por exemplo, são x = 4 ou x = 6, pois:
Substituindo x = 4 na equação, temos:
x² – 10x + 24 = 0
4² – 10 * 4 + 24 = 0
16 – 40 + 24 = 0
–24 + 24 = 0
0 = 0 (verdadeiro)
Substituindo x = 6 na equação, temos:
x² – 10x + 24 = 0
6² – 10 * 6 + 24 = 0
36 – 60 + 24 = 0
– 24 + 24 = 0
0 = 0 (verdadeiro)
Podemos verificar que os dois valores satisfazem a equação, mas como podemos determinar os valores que tornam a equação uma sentença verdadeira? É essa forma de determinar os valores desconhecidos que abordaremos a seguir.

Método de Bhaskara
Vamos determinar pelo método resolutivo de Bhaskara os valores da seguinte equação do 2º grau: x² – 2x – 3 = 0.
Uma equação do 2º grau possui a seguinte lei de formação: ax² + bx + c = 0, em que a, b e c são os coeficientes. Portanto, os coeficientes da equação x² – 2x – 3 = 0 são a = 1, b = –2 e c = –3.
Na fórmula de Bhaskara, utilizaremos somente os coeficientes. Veja:
1º passo: determinar o valor do discriminante ou delta (∆)
∆ = b² – 4 * a * c
∆ = (–2)² – 4 * 1 * (–3)
∆ = 4 + 12
∆ = 16
2º passo:
x = – b ±
      2∙a
x = –(– 2) ± √16
       2∙1
x = 2 ± 4
     2
x' = 2 + 4 = 6 = 3
   2       2
x'' = 2 – 4 = – 2 = – 1
2        2
Os resultados são x’ = 3 e x” = –1.
Exemplo II: Determinar a solução da seguinte equação do 2º grau: x² + 8x + 16 = 0.
Os coeficientes são:
a = 1
b = 8
c = 16
∆ = b² – 4 * a * c
∆ = 8² – 4 * 1 * 16
∆ = 64 – 64
∆ = 0
x = – b ± √∆
     2∙a
x = – 8 ± √0
     2∙1
x' = x'' = –8 = – 4
    2
No exemplo 2, devemos observar que o valor do discriminante é igual a zero. Nesses casos, a equação possuirá somente uma solução ou raiz única.
Exemplo III: Calcule o conjunto solução da equação 10x² + 6x + 10 = 0, considerada de 2º grau.
∆ = b² – 4 * a * c
∆ = 6² – 4 * 10 * 10
∆ = 36 – 400
∆ = –364
Nas resoluções em que o valor do discriminante é menor que zero, isto é, o número é negativo, a equação não possui raízes reais.






Sobre o Autor

Prof. Ms Valdivino Sousa é Contador, Matemático, Pedagogo, Psicanalista, Bacharel em Direito, Escritor e Mestrado em Ciências da Educação Matemática. Criador do método X Y Z que facilita na aprendizagem de equação e expressão algébrica com objetos ilustrativos. Docente nos cursos de Matemática, Ciências Contábeis, Administração e Engenharia. Autor de mais de 10 (dez) livros e têm vários artigos publicados em revistas e jornais especializados. Blogueiro Mtb 60.448, Consultor e Estrategista de Mídias Digitais. Semanalmente escreve para o portal D.Dez, Jornal da Cidade e Folha Online. Sobre: Comportamento, Educação Matemática e Desenvolvimento da Aprendizagem. Tem experiência na área de Matemática, com ênfase em Equações Diferenciais Parciais, Matemática Computacional e Engenharia Didática, atuando principalmente nos seguintes temas: métodos numéricos, equações diferenciais, modelagem, simulações e didática no ensino de matemática. Acesse o site: www.matematicosousa.com.br E-Mail: valdivinosousa.mat@gmail.com Whatsap: 11 – 9.9608-3728

Nenhum comentário